

特性

- ▶ 可以做802.11ac测试,采样带宽达到160MHz
- ▶ 可支持BT1.0-4.0测试需求
- > 测试时间大大减少,有利于研发,生产测试
- 对客户端OS依赖性很小,控制页面功能强大
 封装接口,方便自动化测试
 - 内置同步源,目前最大可支持4*4 MIMO

通过输入地址栏仪器IP可打开主页面

Admin			
Information			
AdminTool			
Diagnostics			

Tools
Port Routing
Trace Tool
SCPI Console
BP Settings
MIMO Setup
Save/Load Settings

Technology 测试页面 Admin 仪器信息 Tools 设置选项 波形文件管理

【Tools】list菜单

Port Configuration X					
Port RF1	Port RF2	Correction Table Editor	Frequency (MHz)	Correction (dB)	
State () VSG VSA	State () VSG VSA	Table # 1			
Correction tables	Correction tables				
Off 👻 Off 👻	Off 👻 Off 👻	Correction 5			
	Port BB	Add Clear			
Apply to all	State 🕕	1 +			
	VSG VSA	6			
	Correction tables	Save All			
	Off 👻 Off 👻	Restore All			

Port Configuration ×					
Port RF1	Port RF2	Correction Table Editor	Frequency (MHz)	Correction (dB)	
State 🛞	State ⊖→	Table # 1	2412	1.000	
VSG VSA	VSG VSA		2422	1.300	
Correction tables	Correction tables	Frequency 2472	2437	1.500	
Off - Off -	Off - Off -	Correction 2	2462	1.800	
		Add Clear	2472	2.000	
	Port BB				
Apply to all	State 🕕	1 🕂 🔜 🖬			
	VSG VSA	6			
	Correction tables	Save All			
	Off 🔻 Off 💌	Restore All			

通过在主页面【Tools】下拉菜 单,选择【Port Routing】,即 可打开【Port Configuration】 页面。

该页面左边两列上部分为设置端 口VSG或VSA(两个端口不能同 时设成相同的功能),下部分为 选择对应的衰减列表。

页面右半部分是衰减列表设置。 目前衰减值最大可设置10个列表, 每个列表可根据不同的频点设置 相应的衰减值。

最后通过*Save All*和*Restore All*保存和读取衰减列表。

测试页面分三个部分:导航栏,控制参数部分,及结果显示部分。在导航栏中选择

测试步骤一:导航条 >>

导航条中VSA和VSG按钮可以使我们进入相关的页面设置仪器参数

VSA1 -	Reset	ClearAll	Technology Module Panel
VSA Settings		Spectrum	Channel
		TxQuality 802.11a/g/n/ac	Band 5G V Number 100 V
Frequency	2500 🗣 MHz	Power Table	Channel Bandwidth 20 💌 MHz
Reference Level	0	Constellation 802.11a/g/n/ac	Apply to VSA1
	5	EVM vs. Subcarrier 802.11a/g/n/ac	
	v v ms	EVM vs. Symbol 802.11a/g/n/ac	Common (802.11b/a/g/n/ac)
Capture Length	1 💼 ms	Phase Error vs. Symbol 802.11a/g/n/ac	
Sampling Rate	160 💌 MHz	Spectral Flatness 802.11a/g/n/ac	Standards Family OFDM 💌
		Preamble Freq. Error vs. Time 802.11a/g/n/ac	Applyzed Signals
Trigger Settings	\checkmark	CCDF 802.11a/g/n/ac	Signal For Power OFDM
		PSD of Phase Error	Detection (1)
Source	VIDeo	TxQuality 802.11b	
Туре	€ Edge ○ Level	Constellation 802.11b	802.11a/g/n/ac V
Edge	POSitive 💌	EVM vs. Time 802.11b	Phase Correction
Threshold Level	-25 🖨 dB	Frequency Error vs. Time 802.11b	Symbol Clock
		RampOffPower 802.11b	Correction On Off
Mode	SSHot 🔻	RampOnPower 802.11b	Amplitude Correction 🔾 On 💿 Off
Gap Time	6 🔷 us	Power vs. time	Frequency Correction LTF
Offset	0 🔹 us	I vs. time	Channel Estimation LTF 💌

测试步骤二: a>设置仪器VSA参数 >>

VSA页面又包含Hardware, Result和Setting三个小页面(从左依次如图)。 Hardware页面中需要设置测试中心频点,输入最大电平,采样带宽和触发模式。 Result页面是根据自身需要,最多选择4种显示结果方式,并把选中的项目依次放到右侧。 Setting页面是设置仪器捕捉波形模式,11b选择DSSS,11a/g/n/ac选择OFDM。

测试步骤二: b>设置仪器VSG参数

VSG页面需要涉及到Hardware页面。 与VSA的Hardware页面相似,需要设置测试中心频点,发射功率以及载入波形。 右图为波形选择页面,其中user文件夹为自定义波形;WIFI文件夹为仪器自带波形。 User文件夹所自定义的波形可以通过Wave Gen页面生成。

File Generation V				MAC Address4	00000000000		
File Name			OFDM Wave Generation Settings				
Description WIFI wave	e generation from GUI				2	1	
Load to VSG Download Generate		Н		Channel Bandwidth	20	• N	н
Standard Selection				Packet Type	20	iec	1
Standard	802.11ac 👻			STBC Num of Extension	40 80		
Wave Generation'	802.11b			Spatial Streams	160		
Wave Generation	802.11n			Streams	1	÷	
PSDU Type	802.11ac			Spatial Mapping Matrix:			- 11
PSDU Length	400			(1.00,0.00)			

测试步骤二: c>自定义波形 >>

由于仪器自身只提供几个波形例子,所以对应不同芯片,需要生成相应的波形。 自定义波形需要定义文件名称(File Name),WIFI模式(Standard),速率(MCS Index)和带宽 (Channel Bandwidth).如果是MIMO测试,还需要设置数据流(Num. of Spatial Streams)。 另外, PSDU Length, MAC Address, Group Delay等也可按照自身要求变更。

测试步骤三: 捕捉, 分析波形

VSG测试序列

VSA测试序列

Technology Admin Tools File	Session Active
F Error Message(s) auto Clean Export	View Session Error(s)
Origin Code Description	

附1: Session Status >>

Session Status有三种状态。绿色,红色和灰色。 绿色表示运行正常; 红色表示操作错误或捕捉分析失败,同时Error Messages中会有相应的问题描述; 灰色表示WIFI模块未正常启动;

